Radiation damage to nucleoprotein complexes in macromolecular crystallography

نویسندگان

  • Charles Bury
  • Elspeth F. Garman
  • Helen Mary Ginn
  • Raimond B. G. Ravelli
  • Ian Carmichael
  • Geoff Kneale
  • John E. McGeehan
چکیده

Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein-DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07-44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N1-C and sugar-phosphate C-O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation damage in macromolecular crystallography: what is it and why should we care?

Radiation damage inflicted during diffraction data collection in macromolecular crystallography has re-emerged in the last decade as a major experimental and computational challenge, as even for crystals held at 100 K it can result in severe data-quality degradation and the appearance in solved structures of artefacts which affect biological interpretations. Here, the observable symptoms and ba...

متن کامل

Cryocooling and radiation damage in macromolecular crystallography.

Advances in cryocrystallographic techniques for macromolecular crystallography have been intimately intertwined with efforts to reduce the deleterious effects of X-ray damage inflicted during the collection of diffraction data. A brief overview of cryomethods and their rationale is given. This is followed by a summary of our current limited understanding of radiation damage in cryocooled crysta...

متن کامل

Temperature-dependent macromolecular X-ray crystallography

X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and thei...

متن کامل

Towards an understanding of radiation damage in cryocooled macromolecular crystals.

Interest in radiation damage is growing rapidly owing to the surge in macromolecular crystallography experiments carried out at modern brilliant synchrotron macromolecular crystallography beamlines. Work on the characterization of radiation damage in cryocooled protein crystals is starting to have some impact on our understanding of the problem and of how damage might be affecting both the proc...

متن کامل

Radiation damage and derivatization in macromolecular crystallography: a structure factor's perspective.

During, or even after, data collection the presence and effects of radiation damage in macromolecular crystallography may not always be immediately obvious. Despite this, radiation damage is almost always present, with site-specific damage occurring on very short time (dose) scales well before global damage becomes apparent. A result of both site-specific radiation damage and derivatization is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015